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Abstract—The thermal contact resistance of two solids touching each another was analyzed with particular
reference to the shape of a single heat channel, This channe! was assumed to have a cylindrical contour whose
radius near the interface decreases gradually to the contact area forming a truncated cone.

The contact resistance of the interface was found as a function of the cone angle, the ratio of the radii of the

truncated cone and the properties of the materials involved.

From anumerical solution it was found that the contact resistance can be described by the properties of the

materials, the number of contact areas and a single function of the radii ratio and that, for small values of
coty, the contact resistance is almost insensitive to the cone angle.
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NOMENCLATURE

radius of contacting circle;
coefficient (equation 20);
radius of heat channel,

= g/ra’ (equation 24);
q/2na./(a* —r?) (equation 25);
function of ¢ (equation 6);
Bessel functions;

thermal conductivity ;

= k,k,/(k, + k,) combined thermal
conductivity;

length (far away from the contact);
number of divisions;

number of contacts;

heat transfer rate;

radial coordinate;

total contact resistance;

a coordinate (Fig. 2);
temperature;

reference temperature at z = L;
temperature difference;

average temperature difference;
a coordinate (Fig. 2};

axial coordinate;

total interface temperature drop;
height of contact cylinder;
exponent {equation 12);

ratio, ¢ = a/c;

eigenvalue ;

angle (Fig. 2);

function of ¢ {(equation 8);
function of ¢ {equation 29};

&(cot y), function of coty (equation 29);

H(e),

Subscripts

1,2,
i ],

function of ¢ {(equation 11).

metals 1 and 2 respectively, in contact;
variable index.

1. INTRODUCTION

WHEN TwoO solids having rough flat surfaces are
touching one another, a metallic contact is formed at a
discrete number of contact areas, whose total area is
smaller than the cross-section of each of the two
bodies. The number and size of the contact areas
depend upon the applied external force between the
surfaces and their mechanical properties.

If heat (or electricity)is transferred from one body to
the other, an additional thermal resistance exists at
the interface. This thermal resistance exhibits a
temperature drop at the interface when heat flows, at
steady state, normally to the interface. The
temperature drop at the interface is the temperature
difference obtained by extrapolating the temperature
profile of the two bodies to the interface.

The overall thermal resistance is found by dividing
the temperature drop by the heat flow:
R = AT“.

q

(1)

However, in trying to analyze the thermal resistance,
one has to examine the individual thermal resistance
R; at any contact area spot, from which the total
thermal resistance is derived:

1Y
.y @
R ,-; R;

where N is the number of contacting areas.

In the last twenty years, a growing number of works
have been published on thermal contact resistance.
Most of them are experimental works, but quite a few
are theoretical [1-6]. Basically, in order to analyze
thermal contact resistance, one can divide the problem
into three parts: surface analysis, deformation analysis
and thermal analysis.

In surface analysis, surfaces are assumed to be rough
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and flat, the roughness being random with a Gaussian
distribution of heights [4]. Both surface analysis and
deformation analysis provide means of calculating the
number of contacts per unit area and their average
radius of the contact area (assuming uniform circular
areas), as functions of surface roughness, surface
profile slope, the mechanical properties of the two
bodies in contact and applied external force.

The thermal analysis of a single heat channel was
treated in various ways. Fenech et al. [1] assumed that
all the heat channels have the same size and are evenly
distributed, each having a cylindrical shape of radius c.
At the interface between the two solids, the contact
point consists of small cylinders of radius «, and
heights 8, and &,, respectively, for two solids 1 and 2.
(Fig. la).

The contact area of each solid was divided into three
zones for which the temperature distribution is found
by solving the three differential equations and the
interconnected boundary conditions. The interface
contact resistance was calculated by extrapolating the
temperature profiles to the interface and using
equation (1). For the case of a vacuum in the interface,
the thermal resistance is

240, +a 246, + a}
—+— -
3)

1—¢*)| -
R _( f )[ ak,
i 24 ma

ak,

and if we assume 8, = §, = 0, equation (3) can be
written as:
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FiG. 1. Heat channels: (a) Fenech [1]; (b) Mikic [4]; (c)
Bochorishvili [7]: (d) Williams [9].
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Mikic et al. [4] assumed semi-infinite cylindrical
heat channels of radius ¢, where heat is supplied over a
circular area of radius a (a<c), at the base of the
cylinder (z = 0) (Fig. 1b). This model is similar to
Fenech’s, except that the small cylinders of radius a
have §, = 6, = 0.

By choosing such a geometry, the authors could
obtain a closed form solution for the temperature
distribution along the heat channel, from which the
thermal resistance was calculated. Their results for
different thermal conditions such as constant tem-
perature or uniform heat flux at the base, without
fluid at the interface, can be written as:

4
R.=—f(¢ 5
. nksaf (¢) (5)
where f(¢) varies very little for the different thermal
conditions. For small values of ¢:
T &

fle)= 6 1 (6)
Bochorishvili et al. [7] made use of the solution of
Smythe [8] which was derived for the electrical
resistance of a plate with variable cross-section, using
the analogy between Fourier’s and Ohm’s laws. For
the case of a small square cross-section of length a that
forms the contact and of the distance ¢ between
contacts (see Fig. 1c), they found that:

4
R, = — (&), 7
i 7 ke Y(e) (7)
where
1 1 I+& 1-¢*
) =—1le+ -l + 21 . (8
v(e) 16[(‘L s:> n(l—z:) n( 4¢ >j| ®)
Williams  [9]  treated, analytically and

experimentally, a single point contact, formed between
a cylindrical heat channel ended by a cone, and a flat
plane. He assumed that, when the tip of the cone is
pressed against a hard flat plane, it is deformed to a
small cylinder. The volume of this small cylinder
(smaller than the basic cylinder) is the same as that of
the tip.

The thermal resistance of the deformed cone is the
sum of the resistances of the truncated cone and the
small cylinder minus the resistance of the basic
cylinder extended to the interface. Using Fig. 1(d), and
a 1-dim. model (spherical isotherms in the truncated
cone), he obtained

(=g [3+(5~-4¢)cosy]
B 6nka sin y '

Yovanovich [10] extended the work of Mikic [4] on
thermal constriction resistance of coaxial cylindrical
contacts. By selecting an arbitrary heat flux
distribution, f(r/a), at the contacting surface, he
developed a general expression for determining the
thermal resistance, as follows:

9)

i
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P(e) (10)

where

nka
L (4i€)® J3(4ic)

¢le) =5' a7y L rf<£>‘]0(;‘ir)dr- (11)
J rf<~>dr
o \a

The heat flux distribution was assumed to be
proportional to

G)-[-0]

where n had the values of = — 4,0, L. His [10] results
were presented in a tabulated form.

It is the purpose of this work to find analytically, the
sensitivity of the shape of the heat channel on the
thermal contact resistance of a single heat channel.

- J1(%¢)
|

(12)

o

2. THERMAL ANALYSIS

The analysis is based on a single heat channel of a
cylindrical contour, where the radius of the channel
near the contact area decreases gradually to the
contacting radius (Fig. 2) [11].

It is assumed that heat is transferred only at the
contact area so that radiation effects and conduction
through fluid which might exist at the interface are
neglected.

The calculation is performed on one body from
which the temperature distribution and thermal
resistance will be derived. The total resistance of the
contact will be the sum of two resistances in series.

2.1. Temperature distribution
The conduction heat transfer at steady state in
cylindrical coordinates (no heat sources) is given by:

LD

F1G. 2. Heat channel for thermal analysis in this work.
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In order to describe the boundary conditions at the

truncated cone it is worthwhile to define another set of
coordinates as follows:

0. (13)

(14a)
(14b)

u=rcosy — zsiny
s=rsiny + zcosy.

With the above coordinates, the boundary conditions
are as follows:

oT
O<r<a z=0 —k <—>=f(r), (15a)
0z
oT
a<r<c O<z<$d — =0, (15b)
U
éT
r=20 z>0 — =0, (16)
or
oT
r=c¢ z>90 - =0, (17)
or
eT
r>0 z=L» —k<—>=iz. (18)
oz e

We define the reference temperature T, so that
T,., =T,
If
U=T-T, 19)

the solution of (13) with the boundary conditions (16)
and (18) gives:

q
kc?

(L-z)+ i Aje™ Jo(ir)  (20)

i=1

U =
7
where, from (17)
J (%) = 0, @1

from which the eigenvalues 4; can be obtained.
To find the coefficient 4,, we make use of equations
(15a) and (15b) and get:

fr) g
k nke

O<r<a (22)

2

S AddoAr) =
i=1

] =

i

Afge-Mrmacoty [J (Frycoty—Jo(A4r)]
1

_ 14
nkc?

a<r<c (23)
The function f(r) can have various forms, for instance,
a uniform heat flux at the contact:

fir) = . (24)

na

A similar function which describes approximately
constant temperature at the interface is
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2
2na\/(a* —r?)

Without losing the generality of the solution,
equation (24)is used for further calculations. Equation

(22) therefore becomes
b q aZ
ZA/J Al1—— ] 0<r<a (26)
. ¢t

Sulry = (25)

nka*

Equations (23) and (26) provide means of calculating
the values A, and together with equation (20) form the
solution of the problem, giving the temperature
distribution in the body.

Unfortunately, the values A; cannot be found
analytically. Therefore, a numerical computer was
used to find A; and the temperature profile. The
method used is described in Section 3.

2.2. Contact resistance

As stated before, the contact resistance of each body
is defined as the temperature drop at the interface,
divided by the heat transfer.

From Fig. 3, one can see the temperature drop AT,
due to the contact resistance, whose division by the
heat gives the contact resistance:

(27)

After using equation (20) to find the average
temperature, equation (27) gives:
2 X AJ(Aa)

1 -
qa ;= ¢

(28)

Here again, the knowledge of the values of A4; will give
the value of R, which can be presented, in general by:

4
R, = — u(g)¢(coty), (29)

ik, a
where pu(e) is a function of the ratio of the contact
radius to the radius of the heat channel and &(cot y)isa
function of the cone’s angle.
The contact resistance of the two bodies with the
same geometry but with a different thermal
conductivity will have the form:

4
= ——{[u(e) &(coty)].  (30)

nk.a

s

R; = (R, + R,)

3. NUMERICAL SOLUTION

The values of A; in equations (23) and (26) cannot be
found analytically. Therefore a numerical solution is
used. The numerical procedure is to divide the
truncated cone of the contacting interface into M
divisions of equal radial spaces.

Ar, =

C
= (31)
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F1G. 3. Average temperature distribution as function of z.

The selection of the number M will determine the
number of series members of equation (20), and
therefore the accuracy of the solution.

From the boundary conditions (15a), (15b),
equations (23) and (26) were obtained respectively. The
substitution of the values of r; for each division will
provide M linear equations with M unknown 4,

Putting the numerical values of 4, into equation (20)
and performing the summation we obtain the
numerical values of the temperature for each point of
the contact area. However, using the same values of A,
in equation (28) we get the contact resistance of one
body. From equations (23), (26) and (28), it follows
that the contact resistance of a single channel depends
upon three parameters: one which depends upon the
properties of the materials in contact, another one
which depends upon the ratio of the contact radius to
the radius of the heat channel, and finally one which is
related to the angle of the truncated cone. These three
parameters can thus be presented as in equation (29),
namely,

4

nkya

R, = u(e) E(coty).

Using the numerical solution, the function &(cot y) is
found numerically (Fig. 4). The function u(e) is
presented in Fig. 5 for the case of constant heat flux
and uniform temperature in the interface.
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FiG. 4. Variation of ¢ vs coty.
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FiG. 5. Contact resistance as function of &

4. DISCUSSION

Most analytical works dealing with the contact
resistance of a single heat channel, present their results
as a function of & whereas the shape of the contact area
isnot treated. Mikic [4] assumes a flat circular contact
area, which means coty = 0, and obtains a single
function f(g), equation (6). Bochorishvili [7], also,
obtain a single function Y(eg), equation (8).

Fenech’s [1] results include a function of ¢ and
another function of the length of the contacting
cylinders (equation 4). If we assume that the length é is
similar to that assumed by Bochorischvili, namely =
a, we get:

R;= [0.354(1 — &5} (32)
7k
If we assume, like Mikic, 8 = 0,
4
R; = [0.104(1 — %] (33)
nka

However, assuming that J is related to a through the
angle y, so that

& ={c— a)coty 3%
we get:
4 [24coty + (1—24cotyk ]
- 1-¢) .
Ry ﬁksa[ 9.6¢ (=)

(35)

The shape of the contact in Williams [9] analysis, is
similar to this work if one ignores the existence of the
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small cylinder. Therefore, according to Williams [9].
the thermal resistance of a contact having the shape of
a truncated cone can be found as

(—-gll+ —2¢)cosy]

. (36
8siny )

4
Ry = k.
Equations (6), (8}, (32, (33), {35) and (36), with coty
= (.1, are presented in Fig. 5, for comparison with this
work.

The results of Yovanovich [10] agree well with those
of Mikic [4] for the cases of = —1, 0.

From this work and Fig. 4 it seems that the function
&(cot y)is almost insensitive to cot y being very close to
unity for small values of coty, therefore, one should
expect a satisfactory description of the contact
resistance by a single function of ¢ as presented in Fig.
5. From Fig. 5, it seems that this work is in good
agreement with Mikic [4] rather than with Fenech,
Bochorischvili or Williams. Therefore, the contact
resistance of a single heat channel is better described
by a resistance of a flat circular surface rather than by
contacting cylinders.
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TRANSFERT THERMIQUE AVEC RESISTANCE DE CONTACT

Résumé—On analyse la résistance thermique de contact de deux solides en contact, en considérant
particuliérement un seul canal pour la chaleur. Ce canal est supposé avoir un contour cylindrique dont le
rayon prés de I'interface décroit graduellement jusqu’ celui de I'aire de contact pour former un tronc de céne.
La résistance de contact est une fonction de I'angle du céne, du rapport des rayons du tronc de cone et des
propriétés des matériaux.
A partir d’'une solution numeérique, on trouvre que la résistance de contact peut étre décrite par les
propriétés des matériaux, le nombre des aires de contact et par une seule fonction du rapport des rayons et
que pour les petites valeurs de cotg y, la résistance de contact est presque insensible 4 'angle du céne.

WARMEUBERGANG MIT KONTAKTWIDERSTAND

Zusammenfassung—Der thermische Kontaktwiderstand zwischen zwei einander beriihrenden Feststoffen
wurde unter besonderer Berlicksichtigung der Form eines einzelnen Wirmestrémungskanals untersucht.
Fiir diesen Kanal wurde eine zylindrische Form angenommen, deren Radius in der Nihe der Grenzfliche
allmahlich in Richtung der Kontaktfliche abnimmt, so daf} ein stumpfer Kegel entsteht. Der Kontaktwider-
stand der Grenzfldche ergab sich als eine Funktion des Kegelwinkels, des Radienverhéltnisses des stumpfen
Kegels und der Stoffwerte der beteiligten Marterialien. Mit Hilfe einer numerischen Losung wurde gefunden,
daf} der Kontaktwiderstand sich durch die Stoffwerte der Materialien, die Anzahl der Kontaktflichen und
eine einzige Funktion des Radienverhiltnisses beschreiben 148t und daB fiir kleine Werte von ctg y der
Kontaktwiderstand nahezu unabhingig vom Kegelwinkel ist.

TETUIOTIEPEHOC [TPMU KOHTAKTHOM COIPOTHUBJIEHUH

Annorauns — [IpoBe/icH aHa/IM3 TEMIOBOTO KOHTAKTHOTO COMPOTHBIEHHA MABYX CONPHKACAKMIKMXCH
TBEPABIX TeJ, MPHYEM 0coboe BHHMaHue o6pallieHo Ha GOpPMY eNHHMYHOrO TeNJIOBOro kaHana. [1pen-
NOJIATaeTCs, YTO KaHall MMeeT LMIHHIPHYECKHH KOHTYp, pajMyc KOTOpPOro Yy TPaHHIbI pa3jena
TIOCTENEHHO YMEHBLLUAETCS, TaK YTO MOBEPXHOCTh KOHTAKTA ABJIAETCS OCHOBAHHEM YCEYEHHOI'O KOHyCa.
Haiineno, 4TO KOHTaKTHOE CONPOTHBJIEHHE TPaHMUbI pa3fiena sBiseTcs (yHKuMed yrna BeplIMHBI
KOHYCa, OTHOUIECHHMS PAaJHYCOB YCEYEHHOTO KOHYCa M CBOWCTB HCNONb3yeMbIX MaTepuanos. [lytem
YHCJIEHHOrO pEIUEHHA NOKa3aHO, YTO KOHTAKTHOE CONPOTHBIEHHE MOXHO ONHCATL C MOMOLIBIO
XapaKTEPHCTHK MATEPHAJIOB, 4YHCIa KOHTAKTHBIX 00JacTed H €AHHMYHOH (QYHKUMH OTHOLIEHHMs pa-
IMYCOB, a TAKXe, YTO NPH HeOOJIbUINX 3HAYEHHAX COt 7 KOHTAKTHOE CONPOTHBIICHHE NOYTH HE 3ABUCHT
OT yIJ1a KOHYCHOCTH.



