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Abstract-The thermal contact resistance of two solids touching each another was analyzed with particular 
reference to the shape of a single heat channel. This channel was assumed to have a cylindrical contour whose 
radius near the interface decreases gradually to the contact area forming a truncated cone. 

The contact resistance of the interface was found as a function of the cone angle, the ratio of the radii of the 
truncated cone and the properties of the materials involved. 

From a numerical solution it was found that the contact resistance can be described by the properties of the 
materials. the number of contact areas and a single function of the radii ratio and that, for small values of 

cot y. the contact resistance is almost insensitive to the cone angle. 
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Subscripts 

1, 2, 
i, j, 

metals I and 2 respectively, in contact; 
variable index. 

NOMENCLATURE 

radius of contacting circle ; 
coefficient (equation 20); 
radius of heat channel; 
= q/m2 (equation 24); 
q/2naJ(a2 - r2) (equation 25); 
function of c (equation 6); 
Bessel functions; 
thermal conductivity; 
= k,k,/(k, + k,) combined thermal 
conductivity; 
length (far away from the contact); 
number of divisions; 
number of contacts; 
heat transfer rate ; 
radial coordinate ; 
total contact resistance; 
a coordinate (Fig. 2); 
temperature ; 
reference temperature at z = L; 
temperature difference ; 
average temperature difference ; 
a coordinate (Fig. 2); 
axial coordinate ; 
total interface temperature drop; 
height of contact cylinder ; 
exponent (equation 12); 
ratio, c = R/C; 
eigenvalue ; 
angle (Fig. 2); 
function of I: (equation 8); 
function of c (equation 29); 
function of cot y (equation 29); 
function of I: (equation 11). 

I. INTRODUCTION 

WHEN TWO solids having rough flat surfaces are 
touching one another, a metallic contact is formed at a 
discrete number of contact areas, whose total area is 
smaller than the cross-section of each of the two 
bodies. The number and size of the contact areas 
depend upon the applied external force between the 
surfaces and their mechanical properties. 

If heat (or electricity) is transferred from one body to 
the other, an additional thermal resistance exists at 
the interface. This thermal resistance exhibits a 
temperature drop at the interface when heat flows, at 
steady state, normally to the interface. The 
temperature drop at the interface is the temperature 
difference obtained by extrapolating the temperature 
profile of the two bodies to the interface. 

The overall thermal resistance is found by dividing 
the temperature drop by the heat flow: 

&IT?. 
4 

However, in trying to analyze the thermal resistance, 
one has to examine the individual thermal resistance 
R, at any contact area spot, from which the total 
thermal resistance is derived : 

where N is the number of contacting areas. 
In the last twenty years, a growing number of works 

have been published on thermal contact resistance. 
Most of them are experimental works, but quite a few 
are theoretical [i-6]. Basically, in order to analyze 
thermal contact resistance, one can divide the problem 
into three parts : surface analysis, deformation analysis 
and thermal analysis. 

In surface analysis, surfaces are assumed to be rough 
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and flat, the roughness being random with a Gaussian 

distribution of heights [4]. Both surface analysis and 
deformation analysis provide means of calculating the 
number of contacts per unit area and their average 
radius of the contact area (assuming uniform circular 
areas), as functions of surface roughness, surface 
profile slope, the mechanical properties of the two 

bodies in contact and applied external force. 
The thermal analysis of a single heat channel was 

treated in various ways. Fenech er al. [l] assumed that 
all the heat channels have the same size and are evenly 
distributed, each having a cylindrical shape of radius c. 
At the interface between the two solids, the contact 
point consists of small cylinders of radius u, and 
heights 6, and 6,, respectively, for two solids 1 and 2. 
(Fig. la). 

The contact area of each solid was divided into three 
zones for which the temperature distribution is found 

by solving the three differential equations and the 
interconnected boundary conditions. The interface 
contact resistance was calculated by extrapolating the 
temperature profiles to the interface and using 
equation (1). For the case of a vacuum in the interface, 
the thermal resistance is 

(I_ +) 2.461 +a 2.46, f u 
1 -+ 

R, = 
ak, ak2 1 

2.4 xa 
(3) 

and if we assume 6, = 6, = 6, equation (3) can be 

written as : 

(Cl (dl 

FIG. 1. Heat channels; (a) Fenech [l], (b) Mikic [4]; (c) 
Bochorishvili [7] : (d) Williams [9]. 

Mikic et al. [4] assumed semi-infinite cylindrical 
heat channels of radius c, where heat is supplied over a 
circular area of radius a (a CC), at the base of the 
cylinder (z = 0) (Fig. lb). This model is similar to 
Fenech’s, except that the small cylinders of radius a 

have 6, = 6, = 0. 
By choosing such a geometry, the authors could 

obtain a closed form solution for the temperature 
distribution along the heat channel, from which the 
thermal resistance was calculated. Their results for 
different thermal conditions such as constant tem- 

perature or uniform heat flux at the base, without 
fluid at the interface, can be written as: 

wheref(c) varies very little for the different thermal 
conditions. For small values of c: 

,f( ,) = z - :. r 
16 4 

Bochorishvili rf ul. [7) made use of the solution of 
Smythe [8] which was derived for the electrical 
resistance of a plate with variable cross-section, using 
the analogy between Fourier’s and Ohm’s laws. For 

the case of a small square cross-section of length a that 
forms the contact and of the distance c between 

contacts (see Fig. lc), they found that: 

where 

Williams [9] treated, analytically and 
experimentally, a single point contact, formed between 
a cylindrical heat channel ended by a cone, and a flat 
plane. He assumed that, when the tip of the cone is 
pressed against a hard flat plane, it is deformed to a 
small cylinder. The volume of this small cylinder 
(smaller than the basic cylinder) is the same as that of 
the tip. 

The thermal resistance of the deformed cone is the 
sum of the resistances of the truncated cone and the 
small cylinder minus the resistance of the basic 
cylinder extended to the interface. Using Fig. l(d), and 
a l-dim. model (spherical isotherms in the truncated 
cone), he obtained 

R, = (l-c)[3+(5-4c)cosyl 
I 6nk,a sin y 

(9) 

Yovanovich [lo] extended the work of Mikic [4] on 
thermal constriction resistance of coaxial cylindrical 
contacts. By selecting an arbitrary heat flux 
distribution, f(r/a), at the contacting surface, he 
developed a general expression for determining the 
thermal resistance, as follows : 
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Rj = &d(e) (10) 
5 

where 

(11) 

The heat flux distribution was assumed to be 

proportional to 

f(b) = [l - ($1 (12) 

where r] had the values of n = - i, 0, $. His [lo] results 
were presented in a tabulated form. 

It is the purpose of this work to find analytically, the 
sensitivity of the shape of the heat channel on the 

thermal contact resistance of a single heat channel. 

2. THERMAL ANALYSIS 

The analysis is based on a single heat channel of a 
cylindrical contour, where the radius of the channel 
near the contact area decreases gradually to the 
contacting radius (Fig. 2) [ll]. 

It is assumed that heat is transferred only at the 
contact area so that radiation effects and conduction 
through fluid which might exist at the interface are 
neglected. 

The calculation is performed on one body from 
which the temperature distribution and thermal 
resistance will be derived. The total resistance of the 
contact will be the sum of two resistances in series. 

2.1. Temperature distribution 
The conduction heat transfer at steady state in 

cylindrical coordinates (no heat sources) is given by : 

FIG. 2. Heat channel for thermal analysis in this work. 

a2T 1 aT a2T 
p+;F+s=& (13) 

In order to describe the boundary conditions at the 
truncated cone it is worthwhile to define another set of 
coordinates as follows : 

u = rcosy - zsiny (l4a) 

s = rsiny + zcosy. (14b) 

With the above coordinates, the boundary conditions 
are as follows: 

O<r<a z=o 

ST 
a<r<c O<z<6 

au= 
0, (15b) 

z>o 
ST 
-_=(I 
ar ’ 

(16) 

aT 
r=c Z>6 -_=O 

ar ’ 
(17) 

r>O z=L>>6 

We define the reference temperature To so that 
T,=, = To. 

If 

U=T-To (19) 

the solution of (13) with the boundary conditions (16) 

and (18) gives: 

U = &(L-z) + f. Aie-+ Jo&r) (20) 
i=l 

where, from (17) 

J,(i.,c) = 0, (21) 

from which the eigenvalues Li can be obtained. 

To find the coefficient Ai, we make use of equations 
(15a) and (15b) and get: 

ji A&o(Q) =jT - &, 0 < r < a (22) 

i$l Aij.ie-ii’r-“)Coty [J,(i.,r)cot y -J,(E.,r)] 

4 =- 
nkc2 

a < r < c. (23) 

The function f (r) can have various forms, for instance, 
a uniform heat flux at the contact: 

f,(r) = $. (24) 

A similar function which describes approximately 
constant temperature at the interface is 
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f,,(r) = 2 
2nuJ(u2 -r2)’ 

Without losing the generality of the solution, 
equation (24) is used for further calculations. Equation 
(22) therefore becomes 

0 <r < a. (26) 

Equations (23) and (26) provide means of calculating 

the values Ai, and together with equation (20) form the 
solution of the problem, giving the temperature 
distribution in the body. 

Unfortunately, the values Ai cannot be found 
analytically. Therefore, a numerical computer was 
used to find Ai and the temperature profile. The 
method used is described in Section 3. 

2.2. Contact resi.stcrnce 
As stated before, the contact resistance ofeach body 

is defined as the temperature drop at the interface, 
divided by the heat transfer. 

From Fig. 3, one can see the temperature drop AT, 
due to the contact resistance, whose division by the 
heat gives the contact resistance: 

i7=o- CT,,+&6 
R, =- i i, 

(27) 
4 

After using equation (20) to find the average 
temperature, equation (27) gives : 

R, =2- c ___ ’ A,J,(i.,a) 

quiz1 ii 
(28) 

Here again, the knowledge of the values of Ai will give 

the value of R,, which can be presented, in general by: 

R, = 2, P(C) t(cot y), (29) 
I 

where P(E) is a function of the ratio of the contact 

radius to the radius of the heat channel and <(cot y) is a 
function of the cone’s angle. 

The contact resistance of the two bodies with the 
same geometry but with a different thermal 
conductivity will have the form: 

R, = (R, + R,) = & [P(E) <(cot y)]. (30) 
\ 

3. NUMERICAL SOLUTION 

Thevalues of Ai in equations (23) and (26) cannot be 
found analytically. Therefore a numerical solution is 
used. The numerical procedure is to divide the 
truncated cone of the contacting interface into M 
divisions of equal radial spaces. 

Ari = i. (31) 

“4 

FIG. 3. Average temperature distribution as function of z. 

The selection of the number M will determine the 

number of series members of equation (20), and 
therefore the accuracy of the solution. 

From the boundary conditions (15a), (15b), 
equations (23) and (26) were obtained respectively. The 
substitution of the values of ri for each division will 
provide M linear equations with M unknown Ai. 

Putting the numerical values of Ai into equation (20) 

and performing the summation we obtain the 
numerical values of the temperature for each point of 
the contact area. However, using the same values of Ai 
in equation (28) we get the contact resistance of one 

body. From equations (23) (26) and (28) it follows 
that the contact resistance of a single channel depends 
upon three parameters: one which depends upon the 
properties of the materials in contact, another one 
which depends upon the ratio of the contact radius to 
the radius of the heat channel, and finally one which is 
related to the angle of the truncated cone. These three 
parameters can thus be presented as in equation (29), 
namely, 

R, = & ~(1:) <(cot y). 
I 

Using the numerical solution, the function ((cot y) is 
found numerically (Fig. 4). The function P(E) is 

presented in Fig. 5 for the case of constant heat flux 
and uniform temperature in the interface. 

FIG 4. Variation of < vs cot y. 
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- Eq 6 
14: 

-c-c-co Ea 29 . . . . 

-o-*=0.*- &g 30 jL 

_.- - Eq 32 (COT y-Oil i 
_ _.. & $‘I 

----- q = const 
\ This 

-.-C-J- 9 0: & 1 work 

---i-1- Eq 36 (co+ r=o il!” 

Fm. 5. Contact resistance as function of I‘. 

4. DISCUSSION 

Most analytical works dealing with the contact 
resistance of a single heat channel, present their results 
as a function of a, whereas the shape of the contact area 
isnot treated. Mikic [4] assumes a flat circular contact 
area, which means cot y = 0, and obtains a single 
function f(c), equation (6). Bochorishvili [7], also, 
obtain a single function Ij/(c), equation (8). 

Fenech’s [l] results include a function of t: and 
another function of the length of the contacting 
cylinders (equation 4). If we assume that the length 6 is 
similar to that assumed by Bochorischvili, namely 6 = 
a, we get: 

Rj = -& [0.354( 1 -c”,]. 
s 

If we assume, like Mikic, 6 = 0, 

R, = & [0.1@4(1 -c”)], 
s 

(33) 

However, assuming that 6 is related to a through the 
angle y, so that 

we get : 

6 = (c - a)cot y (34) 

The shape of the contact in Williams [P] analysis, is 
similar to this work if one ignores the existence of the 

small cylinder. Therefore, according to Williams [9], 
the thermal resistance of a contact having the shape of 
a truncated cone can be found as 

R. _ 4 (l-~:)~1+(1-2cfCOSy] 
J 8siny . 

(36) 
xk,a 

Equations (6), (8), (32), (331, (35) and (36), with cot 1 
= 0.1, are presented in Fig. 5, for comparison with this 
work. 

The results of Yovanovich [lo] agree well with those 
of Mikic [4] for the cases of 9 = --& 0. 

From this work and Fig. 4 it seems that the function 
r(cot y) is almost insensitive to cot y being very close to 
unity for small values of cot y, therefore, one should 
expect a satisfactory description of the contact 
resistance by a single function of F: as presented in Fig. 
5. From Fig. 5, it seems that this work is in good 
agreement with Mikic [4] rather than with Fenech, 
Bochorischvili or Williams. Therefore, the contact 
resistance of a single heat channel is better described 
by a resistance of a flat circular surface rather than by 
contacting cylinders. 
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TRANSFERTTHERMIQUEAVECRESISTANCE DECONTACT 

Resume-On analyse la resistance thermique de contact de deux solides en contact, en considtrant 
particulitrement un seul canal pour la chaleur. Ce canal est suppose avoir un contour cylindrique dont le 
rayon pres de l’interface decroit graduellement jusqu’a celui de faire de contact pour former un tronc de cone. 

La resistance de contact est une fonction de l’angle du cone, du rapport des rayons du tronc de cone et des 
proprietts des materiaux. 

A partir dune solution numerique, on trouvre que la resistance de contact peut &tre d&rite par les 
proprittes des materiaux, le nombre des aires de contact et par une seule fonction du rapport des rayons et 

que pour les petites valeurs de cotg y. la resistance de contact est presque insensible a l’angle du cone. 

WARMEOBERGANG MIT KONTAKTWIDERSTAND 

Zusammenfassung-Der thermische Kontaktwiderstand zwischen zwei einander beriihrenden Feststolfen 
wurde unter besonderer Beriicksichtigung der Form eines einzelnen Wlrmestromungskanals untersucht. 
Fiir diesen Kanal wurde eine zylindrische Form angenommen, deren Radius in der Nahe der Grenzfllche 
allmlhlich in Richtung der Kontaktflache abnimmt, so dag ein stumpfer Kegel entsteht. Der Kontaktwider- 
stand der GrenzHPche ergab sich als eine Funktion des Kegelwinkels, des Radienverhlltnisses des stumpfen 
Kegels und der Stotfwerte der beteiligten Marterialien. Mit Hilfe einer numerischen Losung wurde gefunden, 
da8 der Kontaktwiderstand sich durch die Stoffwerte der Materialien, die Anzahl der Kontaktfllchen und 
eine einzige Funktion des Radienverhlltnisses beschreiben IaiRt und dal3 fiir kleine Werte von ctg y der 

Kontaktwiderstand nahezu unabhangig vom Kegelwinkel ist. 

TEHJlOfIEPEHOC HPM KOHTAKTHOM COflPOTHBJfEHWM 

AHHOTmUIfl - flposenen aHam TennOBOrO KOHTaKTHOrO COnpOTHBneHHa nsyx conpriKacaromnxcs 

Tsepnblx Ten, npeYeM oco6oe BHRMaHue o6patueao Ha $OpMy enHHH~HOr0 +ennoBoro KaHana. ffpen- 

nonaraeTca, s~o KaHan nMeeT nu.aminpwtecKHl KoHTYP, paneyc KoToporo y rpanaubt pa3nena 

nOCTeneHH0 yMeHbmaeTCa, TaK YTO nOBepXHOCTb KOHTaKTa IlBnaeTCa OCHOBaHHeM yCe’,eHHOrO KOHyCa. 

Hafineno, 9TO KOHTaKTHOe COnpOTHBJteHue rpaHuub1 pa3nena RBnReTCa (PyHKnWefi yraa BepmAHbl 

KoHyca, 0THotneHua paneycoa yceqeeHor0 KoHyca w cB0iicT~ ucnonb3yeMbtx MaTepeanoB. ffyTeM 

wicnenHor0 pememia noKa3an0, ‘tT0 KOHTaICTHOe COnpOTnBJteHue MOmHO OnHCaTb C nOMOmb,O 

xapaKTepHcTuK MaTepeanoB, wicna KoHTaKTHbtx o6nacrefi u enmnirnoii QyH~ttuu 0THomenna pa- 

nHyCOB, a TaKXCe, ‘(TO npu He6OnbwHX 3HaYeHHIIX Cot 7 KOHTaKTHO‘Z COnpOTuBaeHue nO’ITn He 3aBuCBT 

0T yrna K0uycH0c~u. 


